
Function theory on Kaehler manifolds

Note by Man-Chun LEE

1 Kaehler manifolds

Let Mn be a smooth manifold. A riemannian metric g is a smooth section of T ∗M ⊗ T ∗M
such that g is symmetric and positive definite at any p ∈M . In local coordinate (x1, ..., xn),

g = gij dx
i ⊗ dxj .

In addition, if M is a complex manifold with almost complex structure J ∈ TM ⊗T ∗M and

g(X,Y ) = g(JX, JY ), ∀X,Y ∈ TM . Then M is called Hermitian manifold, (M, g, J).

One can define a 2-form ωg where ωg(X,Y ) = −g(X,JY ). Let ∇ be the Levi-connection of

a Hermitian manifold (M, g, J).

Definition 1.1. A Kahler manifold (M, g, J) is a Hermitian manifold such that ∇J = 0.

In particular, (M,J) is a complex manifold.

Proposition 1.1. ∇J = 0 if and only if dω = 0. Thus, a Kahler manifold is also a

symplectic manifold.

Proof. For X,Y, Z ∈ Γ(TM). By invariant formula, we have

dω(X,Y, Z) = −Xg(Y, JZ) + Y g(X, JZ)− Zg(X, JY )

+ g([X,Y ], JZ)− g([X,Z], JY ) + g([Y, Z], JX)

We choose X = e1, Y = e2, Z = e3 to be normal coordinate vector field at p in order to

simplify our calculation. By J2 = −Id, we have at p,

dω(X,Y, Z) = −g(Y, (∇XJ)Z)− g(X, (∇ZJ)Y ) + g(X, (∇Y J)Z)

= g(Z, (∇XJ)Y ) + g(Y, (∇ZJ)X) + g(X, (∇Y J)Z).

The above equation is independent of choice of coordinate, so it is valid for arbitrary X,Y, Z.

At the same time, since J∇J +∇J · J = 0,

g((∇XJ)Y,Z) = g(∇X(JY ), Z)− g(J∇XY, Z)

= Xg(JY, Z)− g(JY,∇XZ)− g(J∇XY, Z)

= −Xω(Z, Y ) + ω(∇XZ, Y ) + ω(Z,∇XY )

Because the connection is torsion free, using invariant formula

2g((∇XJ)Y, Z) = dω(X,Y, Z)− dω(X, JY, JZ).
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1.1 Curvature on Kahler manifold

Given a Kahler manifold (M, g, J), extend g C-linearly to TM ⊗R C = T 1,0M ⊕ T 0,1M .

Proposition 1.2. If u, v are both in T 1,0M or T 0,1M , then g(u, v) = 0.

Thus, locally we have

ωg =

√
−1

2

∑
i,j

gij̄ dz
i ∧ dz̄j .

Denote h(u, v) = g(u, v̄) for u, v ∈ T 1,0M , then h becomes a hermitian inner product.

Extend ∇ in a C way to Γ(TCM).

∇ ∂

∂zi

∂

∂zj
= Γk̄ij

∂

∂zk̄
+ Γkij

∂

∂zk
, ∇ ∂

∂zi

∂

∂zj̄
= Γk̄ij̄

∂

∂zk̄
+ Γkij̄

∂

∂zk
.

Because of the fact that ∇J = 0, this will imply

Γk̄ij = Γk̄ij̄ = Γkij̄ = 0.

So the only non-vanishing term will be Γk̄
īj̄

and Γkij .

By definition,

∂gjk̄
∂zi

= g(∇ ∂

∂zi

∂

∂zj
,
∂

∂zk̄
) + g(

∂

∂zj
,∇ ∂

∂zi

∂

∂zk̄
) = Γlij̄ glk̄.

So we have the following formula.

Γlij = glk̄∂igjk̄.

Proposition 1.3. M is a Kahler manifold if and only if for all x ∈ M , we can find a

holomorphic chart (z1, ..., zn) such that gij̄(x) = δij and dgij̄(x) = 0.

Recall Riemannian curvature tensor:

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w , u, v ∈ TRM.

Extend Rm complex linearly to TCM and denote R(u, v, w, x) = g(R(u, v)w, x).

Since J is parallel, R(u, v)(Jw) = J(R(u, v)w). Thus,

R(u, v, Jw, Jx) = R(u, v, w, x).

By symmetric of curvature operator, R(u, v, w, x) = 0 if w, x are of same type. The only

non-vanishing term are Rij̄kl̄.

By first Bianchi identity, we have a extra symmetric property for Rm on Kahler manifolds.

Rij̄kl̄ +Ril̄j̄k = 0.
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Proposition 1.4. In local coordinate,

Rij̄kl̄ = −∂k∂l̄gij̄ + gst̄∂kgsj̄ · ∂l̄git̄.

We define Ricci curvature on M by

Rkl̄ = gij̄Rij̄kl̄ = −∂k∂l̄ log det(gij̄).

Some notation for complex manifold:

For f ∈ C∞(M), d = ∂ + ∂̄ where

∂f =
∑
i

∂f

∂zi
dzi, ∂̄f =

∑
i

∂f

∂z̄i
dz̄i.

In general,

∂ : Ap,q → Ap+1,q, ∂̄ : Ap,q → Ap,q+1.

And ∂, ∂̄ satisfies ∂2 = ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0.

The Ricci form is then given by

Ric =

√
−1

2
Rij̄dz

i ∧ dzj̄ .

So locally

Ric = −
√
−1

2
∂∂̄ log det g

which is clearly a closed, real (1,1) form.

Remark: One can check that the definition is same as the Ricci curvature in Riemannian

case. In particular, if we choose a orthonormal base {e1, ..., en} such that Jei = en+i. And

ui = (ei −
√
−1en+i)/

√
2. Then {ui} is a unitary frame on T 1,0M . Direct computation

yield

Ric(ui, ūi) = Ric(ei, ei).

Definition 1.2. We say M has a non-negative bisectional curvature, BK ≥ 0 if

R(u, ū, v, v̄) ≥ 0 for all u, v ∈ T 1,0M.

We say M has a non-negative holomorphic curvature, H ≥ 0, if

R(u, ū, u, ū) ≥ 0 for all u ∈ T 1,0M.

Noted that BK ≥ 0 imply Ric ≥ 0. But the relationship between H and Ric remains

unknown.

1.2 Result about structure of manifolds with curvature constraint

Theorem 1.3. (Uniformization theorem) Every simply connected Riemann surface is con-

formally equivalent to one of the three domains: the open unit disk, the complex plane, or

the Riemann sphere.
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Uniformization conjecture by Yau: If M is complete non-compact Kahler man-

ifold with BK > 0, then M is biholomorphic to Cn.

Theorem 1.4. (Soul theorem) If (M, g) is a complete connected Riemannian manifold

with sectional curvature K ≥ 0, then there exists a compact totally convex, totally geodesic

submanifold S such that M is diffeomorphic to the normal bundle of S.

In particular, if K > 0, then S is a singleton. That is to say M being diffeomorphic to Rn.

Theorem 1.5. (Frankel Conjecture solved by Siu-Yau, Mori) If M is compact Kahler man-

ifold with BK > 0, then M is biholomorphic to CPn.

Definition 1.6. Given a Riemannian manifold Mn, let p ∈ M . We say M has maximal

volume growth if V ol(B(p,r))
rn ≥ c > 0 for all r > 0.

Theorem 1.7. (Mok-Siu-Yau,1981) Let M be a non-compact Kahler manifold. If there

exists C, ε > 0 such that 0 ≤ BK(x) ≤ C
r(x)2+ε and M has maximal volume growth, then M

is biholomorphic and isometric to Cn.

2 Mok-Siu-Yau’s result

Theorem 2.1. (Mok-Siu-Yau,1981) Let M be a non-compact Kahler manifold. If there

exists C, ε > 0 such that 0 ≤ BK(x) ≤ C
r(x)2+ε and M has maximal volume growth, then M

is biholomorphic and isometric to Cn.

Proposition 2.1. Mn is Kahler manifold with BK ≥ 0. Let ρ be a real d-closed (1,1)

form, f = ρij̄g
ij̄. If f = 1

2∆Ru for some function u, then ||
√
−1∂∂̄u− ρ||2 is sub-harmonic.

Proof. Choose a normal coordinate at p. Then Rij̄kl̄ = −∂k∂l̄gij̄ at p. Let v =
√
−1∂∂̄u−ρ.

1

2
∆||v||2 = ∂i∂ī(g

il̄gkj̄vij̄vlk̄)

= Rl̄ipp̄vij̄vlj̄ +Rjk̄pp̄vij̄vik̄ +
∣∣∂pvij̄∣∣2 +

∣∣∂p̄vij̄∣∣2
+ ∂p∂p̄vij̄ · vij̄ + vij̄ · ∂p∂p̄vij̄

By ∂∂̄ lemma, ρ =
√
−1∂∂̄w for some w locally as ρ is d-closed (1,1) form. By assumption,

trac(v) = 0. Taking derivative on trac(v) to yield∑
k,l

Rlk̄ij̄vkl̄vij̄ +
∑
k

∂i∂j̄vkk̄ · vij̄ = 0, ∀ i, j.

By mean of transformation of U(n), we may further assume vij̄ = aiδij at p, where ai are

real. Then,

1

2
∆||v||2 ≥ Rl̄ipp̄vij̄vlj̄ +Rjk̄pp̄vij̄vik̄ + ∂p∂p̄vij̄ · vij̄ + vij̄ · ∂p∂p̄vij̄

≥ 2Rīipp̄a
2
i − 2Rīipp̄aiap ≥ 0.
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Proposition 2.2. (Mn, p), n ≥ 3 is a manifold with Ric ≥ 0 and maximal volume growth.

Let f ≥ 0 be a smooth function on M . Then ∆u = f has a solution if

1. f(x) ≤ C
1+r(x)2 , and ∃c1 such that −c1 log(r(x) + 2) ≤ u(x) ≤ c1 log(r(x) + 2).

2. f(x) ≤ C
1+r(x)2+ε , and ∃C2 > 0 such that |u(x)| ≤ C2.

Proof. Here we will only demonstrate case 1.

(Some review for Green function [5]) For Mn with Ric ≥ 0, it is non-parabolic if

and only if ∫ ∞
1

t

Vp(t)
<∞.

Due to the non-collapsing assumption, Greeen function G(x, y) exists with the

following properties.

1. G(x, y) > 0,

2. ∃ c > 0 s.t. c−1

dn−2(x,y) ≤ G(x, y) ≤ c
dn−2(x,y) ,

3. G(x, y) = G(y, x),

4.
∫
M
G(x, y)∆f(y) dy = −f(x) for f ∈ C∞0 (M),

5. |∇xG(x, y)| ≤ C
dn−1(x,y) .

For R > 0, let fR(x) = ϕ(x)f(x) where ϕ is a non-increasing smooth function in which

ϕ = 1 on B(p,R+ 1), ϕ = 0 on B(p,R) and ϕ′, ϕ′′ are bounded. Let

uR(x) =

∫
M

[G(p, y)−G(x, y)]fR(y) dy.

Then uR satisfy ∆uR = fR and uR(p) = 0. For x ∈ M , R >> r = r(x). By gradient

estimate for G,∫
B(p,R)\B(p,2r)

|G(p, y)−G(x, y)| fR(y) dy ≤
∫
B(p,R)\B(p,2r)

cr

(d(y, p)− r)n−1
f(y) dy

≤
∫
B(p,R+1)\B(p,2r)

Cr

(1 + r(y)2)(r(y)− r)n−1
dy.

By volume comparsion, we further deduce that∫
B(p,R+1)\B(p,2r)

|G(p, y)−G(x, y)|fR(y) dy ≤
∫ R

2r

Ctn−1r

(1 + t2)(t− r)n−1
dt ≤ Cn.

On the other hand,∫
B(p,2r)

G(p, y)f(y) dy ≤
∫
B(p,2r)

c

r(y)n−2(1 + r(y)2)
dy

=

∫ 2r

0

c

tn−2(1 + t2)
dAtdt

≤ C log(r + 2).
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∫
B(x,r/2)

G(x, y)f(y) dy ≤ Cn
r2 + 4

∫ r/2

0

s ds ≤ Cn.

Also, for r > 0∫
B(p,2r)\B(x,r/2)

G(x, y)f(y) dy ≤
∫
B(p,2r)\B(x,r/2)

c

d(x, y)n−2(d(p, y)2 + 1)
dy

≤ C1

∫ 2r

−r/2

s+ r

s2 + 1
ds

=
C1

2
log

16r2 + 1

r2 + 4
+ C1r · [arctan(2r) + arctan(r/2)]

≤ Cn.

Combine all this, we have

|uR(x)| ≤ Cn[log(r(x) + 2)].

We now claim that limR→∞ uR(x) exists after passing to subsequence.

First as M has non-negative Ricci curvature and is non-collapsing, Sobolev inequality with

compact support is valid. Furthermore, the sobolev constant is an absolute constant. Thus

we have Harnack inequality for positive harmonic functions on geodesic ball and hence the

Holder estimate

|u(x)− u(x0)| ≤ CR|x− x0|α

for x, x0 ∈ B(p,R).

Let R1 < R2 < ... < Rn < ... correspond the exhaustion, for each j ∈ N, define vi =

uRi − uRj which is harmonic on B(p,Rj). Thus for x, y ∈ B(p,Rj/2),

|uRi(x)− uRi(y)| ≤ |vi(x)− vi(y)|+ |uRj (x)− uRj (y)| ≤ Cj |x− x0|α + |uRj (x)− uRj (y)|.

So, {uRi}∞i=j is equicontinuous on B(p,Rj/2). By ArzelAscoli theorem, we can extract

convergent subsequence limR→∞ uR(x) on B(p,Rj/2). Using diagonal argument, we have

limit function u(x) = limR→∞ uR(x). By gradient estimate of G, we infer that |∇u| =

O(1/r).

Lemma 2.2. Second derivative estimate for both situations:

1

vol(B(p,R))

∫
B(p,R)

|∇2u|2 ≤ C

R4
for R > 1.

Proof. Recall bochner’s formula,

1

2
∆|∇u|2 = |∇2u|2 + 〈∇u,∇∆u〉+Ric(∇u,∇u) ≥ |∇2u|2 + 〈∇u,∇f〉.

Let φ be a cut-off function such that φ = 1 on B(p,R), φ = 0 outside B(p, 2r), and
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|∇φ| ≤ c/R.∫
B(p,2R)

φ2|∇2u|2 ≤ 1

2

∫
B(p,2R)

φ2∆|∇u|2 − φ2〈∇u,∇f〉

≤ −
∫
B(p,2R)

φ∇φ · ∇|∇u|2 − φ2〈∇u,∇f〉

≤ C

[∫
B(p,2R)

φ2f2 + εφ2|∇2u|2 + (1 +
1

ε
)|∇φ|2|∇u|2

]

Choose ε small enough to conclude the result.

Theorem 2.3. Let Mn be a complete Kahler manifold with BK ≥ 0 and maximal volume

growth. In addition, if the scalar curvature S ≤ c
r2+ε , then M is flat.

Proof. By previous porposition, we can solve for u in which ∆u = s. In particular, |u| ≤ C,

|∇u| = o(1/r). As ||Ric −
√
−1∂∂̄u|| is subharmonic, by Li’s mean value inequality, for

R >> r(x),

||Ric−
√
−1∂∂̄u||2(x) ≤ C

V ol(B(p,R))

∫
B(p,R)

||Ric−
√
−1∂∂̄u||2

≤ C

V ol(B(p,R))

∫
B(p,R)

|∇2u|2 + |Ric|2 = O(
1

R4
)→ 0.

Thus, Ric =
√
−1∂∂̄u. To finish our proof, it suffices to show that u is constant.

For n ≥ 2,∫
B(p,r)

(∂∂̄u)n =

∫
∂B(p,r)

∂̄u ∧ (∂∂̄u)n−1 = o(1/r) · ( 1

r2+ε
)n−1 ·O(r2n−1)→ 0.

Thus, (∂∂̄u)n = 0. Assuming M is stein, let Φ : M → CN be the embedding, Φ(p) =

(z1(p), z2(p), ..., zN (p)). Let φ be the restriction of
∑N
i=1 |zi|2 on M . If u is non-constant,

for each c < 0, Mc = {u < c} is precompact. We may further assume Mc is smooth.

Let x0 be a point on ∂Mc such that φ attains maximum. So locally Mc is on one side

of {φ = φ(x0)}. Therefore i∂∂̄u is bounded below by the complex hessian of the distance

function on the complex tangent space of ∂Mc at x0. In particular, i∂∂̄u is strictly positive

on it.

∂∂̄eu = eu∂∂̄u+ eu∂u ∧ ∂̄u

is then positive at x0. However, on M∫
B(p,r)

(∂∂̄eu)n =

∫
∂B(p,r)

∂̄eu ∧ (∂∂̄eu)n−1

=

∫
∂B(p,r)

enu∂̄u ∧ (∂∂̄u+ ∂u ∧ ∂̄u)n−1 → 0.

So, (∂∂̄eu)n ≡ 0. Contradiction arised.

Remark: It has been proved later by Ni-Tam that M must be stein if it satisfies

the assumption in this theorem.
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Corollary 2.4. Suppose M is a Kahler manifold with maximal volume growth and BK ≥ 0.

Furthermore, if the scalar curvature s ≤ C
r2 , then

∫
M
Ricn <∞.

Proof. Solve for i∂∂̄u = Ric.∫
B(p,R)

Ricn =

∫
∂B(p,R)

i∂̄u ∧Ricn−1 ≤ C ′ <∞

Where C ′ is independent of R.

Theorem 2.5. (Ni-Shi-Tam) The conclusion of Proposition 2.2 still hold if we only assume

Ric ≥ 0 and

0 ≤ f(x) ≤ c

1 + r(x)2
and

1

Vp(r)

∫
B(p,r)

f(x) ≤ C

1 + r2
.

Corollary 2.6. If Mn has BK ≥ 0, and Ric > 0 at p ∈ M . Furthermore, if the scalar

curvature satisfies s ≤ C
r2 and 1

Vp(r)

∫
B(p,r)

s ≤ C
r2 . Then M has maximal volume growth

and ∃c′ = c′(M) > 0 such that for r large

1

Vp(r)

∫
B(p,r)

s ≥ c′

r2
.

Proof. Solve for u where i∂∂̄u = Ric by Theorem above. |∇u| ≤ c/r. Then

0 < c <

∫
B(p,R)

Ricn =

∫
B(p,R)

i∂∂̄u ∧Ricn−1

=

∫
∂B(p,R)

i∂̄u ∧Ricn−1 ≤ C · 1

R
· 1

R2n−2
· vol(∂B(p,R))

which implies maximal volume growth.

Assume r >> 1,

0 < c <

∫
B(p,r)

Ricn =

∫
∂B(p,r)

i∂̄u ∧Ricn−1

≤ C

r2n−3

∫
∂B(p,r)

Ric ∧ ωn−1

=
C

r2n−3

∫
∂B(p,r)

s.

Theorem 2.7. (Chen-Zhu) Let Mn be a Kahler manifold BK > 0. Let p ∈ M . Then

∃c = c(M,p) > 0 such that

vol(B(p, r)) ≥ Crn.

Proof. Consider Busemann function b on M , where

b(x) = lim
r→∞

(r − d(x, ∂B(p, r))).
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It is known that |∇b| = 1 a.e. and b is strictly plurisubharmonic in the support sense. By

smoothing argument, for R > 2, ∃c > 0 such that

0 < cR2n ≤
∫
B(p,R)

(i∂∂̄b)n(R− r)2n = 2n

∫
B(p,R)

(R− r)2n−1∂̄b ∧ (i∂∂̄b)n−1 ∧ ∂r

≤ Cn
∫
B(p,R)

(R− r)2n−1(i∂∂̄b)n−1 ∧ ω

≤ C ′n
∫
B(p,R)

(R− r)nωn ≤ C ′nRnVp(R),

which implies V ol(B(p, r)) ≥ c′rn, for all r > 2.

3 Application of Hörmander L2 estimate.

Theorem 3.1. (Hörmander L2 estimate): Let (M,ω) be a complete Kaehler manifold. L→
M be holomorphic line bundle with Hermitian metric h (locally given by e−2φ, |s|2h = e−2φ.

Let Θ be the curvature (1,1)-form, Θ = 2i∂∂̄φ. Let g be a smooth section in Λn,1 ⊗ L (i.e.

L valued (n,1) form.), with ∂g = 0. Assume Θ ≥ εω where ε is positive function on M . If∫
M

|g|2hε−1 <∞, then there exists f ∈ Γ(Λ(n,0) ⊗ L) such that

∂f = g and

∫
M

|f |2h ≤
∫
M

|g|2h
ε
.

3.1 Some Applications of L2-estimate

Theorem 3.2. (Mok) Let Mn be a complete Kahler manifold with BK > 0 and maximal

volume growth. Furthermore suppose the scalar curvature s satisfies s ≤ c
r2 , r(x) = d(x, x0)

for some fixed point x0 ∈ M , then there exists a non constant holomorphic function with

polynomial growth on M .

Proof. Due to the growth condition of scalar curvature s, one can solve u in which i∂∂̄u =

Ric. Furthermore, u satisfies

|u(x)| ≤ C log(r(x) + 2).

Let p ∈M , there exists a holomorphic chart (z1, ..., zn) on B(p, δ) with zi(p) = 0. Let ϕ be

cut-off function with ϕ = 1 on B(p, δ/5) and ϕ = 0 outside B(p, δ/3). Now we look for a

good weight function.

Lemma 3.3. i∂∂̄(λu+ 2nϕ log(|z|2)) ≥ cω > 0 on B(p, δ/3) for some λ >> 1, c > 0.

Proof. Noted that i∂∂̄ log |z|2 ≥ 0 in the current sense. Thus,

i∂∂̄[ϕ log |z|2] = iϕ∂∂̄ log |z|2 + i∂∂̄ϕ · log |z|2 + i∂ϕ ∧ ∂̄ log |z|2 + i∂ log |z|2 ∧ ∂̄ϕ

≥ −c,
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where c depends on the C2 bounds of ϕ and δ. So for sufficiently λ, we have on B(p, δ/3)

i∂∂̄
(
λu+ 2nϕ log |z|2

)
≥ cω.

Take L = Tn,0(M), choose metric h = e−ψ = e−(λu+2nϕ log |z|2). Thus, the curvature

form Θ = −i∂∂̄ log h ≥ cω > 0. Let φ be a smooth cut-off function such that φ = 1 on

B(p, δ/5) and φ = 0 outside B(p, δ/4). Apply L2 estimate to solve ∂̄g = ∂̄(φz1) with∫
M

|g|2e−ψ ≤ 2

c

∫
M

|∂̄(φz1)|2e−ψ <∞.

Noted that on B(p, δ/5), e−ψ = e−λu|z|−4n. Thus, it is not locally integrable which implies

g(p) = 0 and dg(p) = 0.

Now f = g − φz1 is holomorphic on M with f(p) = 0, df(p) = d(φz1) 6= 0. f is thus

non-constant and f = g outside B(p, δ). It suffices to show that g is of polynomial growth.

Let y ∈ ∂B(p,R) in which R > 100,

C ≥
∫
M

|g|2e−ψ ≥
∫
B(y,R/2)

|g|2e−λu ≥
∫
B(y,R/2)

|g|2(r + 2)−c ≥ C ′R−c
∫
B(y,R/2)

|g|2.

By Li’s mean value inequality together with maximal volume growth condition, we conclude

that ∃C > 0 independent of y such that

|g(y)|2 ≤ Cn
Vy(R/2)

∫
B(y,R/2)

|g|2 ≤ CRc−2n.

Theorem 3.4. (Chen-Zhu) Let Mn be a Kahler manifold with BK > 0, then the scalar

curvature s satisfies 1
Vp(r)

∫
B(p,r)

s ≤ c
r , where c = c(M,p).

Proof. Let p ∈M . Let (z1, ...zn) be a chart on B(p, δ). Consider the Busemann function b,

it satisfies i∂∂̄b > εω for some ε > 0 on B(p, δ). Define ψ = λb + 2nφ log |z|2, where φ is a

cut-off function same as the proof above. λ is large enough such that i∂∂̄ψ ≥ cω on B(p, δ).

Consider a smooth section on the canonical line bundle u = ϕdz1 ∧ dz2 ∧ ...∧ dzn, where

ϕ is a smooth function with compact support on B(p, δ/4) and equals to 1 on B(p, δ/5). By

L2 estimate, we obtain a nontrival holomorphic section θ on KM such that ||θ(p)|| = 1 and∫
M

||θ||2e−λb <∞.

Since the Busemann function is distance like function and ∆||θ||2 ≥ 0, by Li’s mean value

inequality [4], we have

|θ(x)| ≤ Cnecr(x).
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For δ > 0, log(|θ|2 + δ) is smooth, and by directly computation,

∆ log(||θ||2 + δ) ≥ s||θ||2

||θ||2 + δ
.

Consider M × C2 instead of M , positive green function exists and the volume growth is at

least of order 4. For α, β >, ε > 0, 0 < δ < 1, for (z, t) ∈M × C2∫
β>G(z)>α

s̃||θ||2

||θ||2 + δ
(G(z, p̃)− α)1+ε ≤

∫
β>G(z)>α

∆ log(||θ||2 + δ)(G− α)1+ε

=

∫
β>G(z)>α

log(||θ||2 + δ) ·∆(G− α)1+ε

+

∫
G=β

∂

∂n
[log(||θ||2 + δ)](G− α)1+ε

−
∫
G=β

(1 + ε) log(||θ||2 + δ)(G− α)ε
∂G

∂n
.

Noted that on {β > G > α},

∆(G− α)1+ε = ε(1 + ε)(G− α)ε−1|∇G|2 ≥ 0.

So we get∫
β>G(z)>α

log(||θ||2 + δ) ·∆(G− α)1+ε ≤ sup
β>G>α

log(||θ||2 + δ) ·
∫
β>G>α

∆(G− α)1+ε

≤ sup
β>G>α

log(||θ||2 + δ) ·
∫
G=β

(1 + ε)(G− α)ε
∂G

∂n
.

Letting ε→ 0 it follows∫
β>G>α

s̃||θ||2

||θ||2 + δ
(G(z, p)− α) ≤ sup

β>G>α
log(||θ||2 + δ) ·

∫
G=β

∂G

∂n

+

∫
G=β

∂

∂n
[log(||θ||2 + δ)](G− α)

−
∫
G=β

log(||θ||2 + δ)
∂G

∂n
.

Since G and ∂G
∂n are asymptotic to cn

r2n−2 and
c′n

r2n−1 as β →∞, thus

|
∫
G=β

(G− α)| ≤ cn
r2n−1

r2n−2
= c(n)r → 0, as β →∞.

and ∫
G=β

∂G

∂n
→ c(n) as β →∞.

Since ||θ(p)|| = 1, letting β →∞ yield∫
G>α

s̃||θ||2

||θ||2 + δ
(G(x, p̃)− α) ≤ cn

[
sup
G>α

log(||θ||2 + δ)− log(||θ||2(p̃) + δ)

]
≤ cn sup

G>α
log(||θ||2 + δ).
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Letting δ → 0 implies ∫
G>2α

s̃(z)G(z, p̃) ≤ cn sup
G>α

log ||θ||2.

For α > 0, let rα be the maximum positive number such that B(p, rα) ⊂ {G > α}. For M

equiped with Ric ≥ 0, the minimal postive Green’s function satisfies

C−1
1

∫ ∞
r(z)

t dt

Vp̃(t)
≤ G(x, p) ≤ C1

∫ ∞
r(z)

t dt

Vp̃(t)
.

By volume comparsion,

G(z, p̃) ≥ C−1
1

∫ ∞
r(z)

t dt

Vp̃(t)
≥ C−1

1

∫ ∞
r(z)

tr2n

Vp(r)t2n
dt ≥ Cn

r(z)2

Vp̃(r(z))
.

On the other hand,

G(z, p̃) ≤ C1

∫ ∞
r(z)

t dt

Vp̃(t)
≤ Cr(z)4

∫ ∞
r(z)

t dt

Vp̃(r)t4
=

Cr(z)2

Vp̃(r(z))
.

As a result, there exists C = C(n) such that for all α > 0, rα satisfies

C−1 r2
α

Vp̃(rα)
≤ α ≤ Cr2

α

Vp̃(rα)
.

Thus, if G(z, p̃) > α,

C−1r(z)2

Vp̃(r(z))
≥ G(z, p̃) > α ≥ C r2

α

Vp̃(rα)
.

by the above inequality,

Vp̃(r(z))

Vp̃(rα)
≤ Cn

r2(z)

r2
α

.

Since B(p, r)×B(0, r) ⊂ B(p̃, r) ⊂ B(p, r)×B(0, r) for each r > 0,

Vp(r(z)/2)

Vp(rα)
≤ cn

(
rα
r(z)

)4

· Vp(r(z)/2) · (r(z)/2)4

24 · Vp(rα) · r4
α

≤ cn
(
rα
r(z)

)4
Vp̃(r(z)/2)

Vp̃(rα)
≤ cnr

2
α

r2(z)
.

That is

r(z) ≤ cnr2
α ·

Vp(r(z)/2)

Vp(rα)
.

In both of the cases r(z)/2 ≤ rα or r(z)/2 ≥ rα, r(z) ≤ cnrα. Thus {G > α} ⊂ B(p̃, cnrα).

Combine everythings, one can get

Cr2
α

Vp̃(rα)

∫
B(p̃,rα)

s̃(z) ≤
∫
B(p̃,rα)

α · s̃(z) ≤
∫
G>α

α · s̃(x) ≤
∫
G>α

G · s̃(x)

≤ cn sup
G>α/2

log ||θ||2 ≤ cn sup
B(p̃,cnrα/2)

log ||θ||2.

On the other hand, rα and rα/2 can be related in the following relation.

r2
α/2 ≤ Cnα · Vp̃(rα/2) ≤ Cn

Vp̃(rα/2)

Vp̃(rα)
· r2
α ≤ Cnr2

α

(
rα/2

rα

)2n

.
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So for any α > 0,

r2
α

Vp̃(rα)

∫
B(p̃,rα)

s̃ dṼ ≤ C(n, p) sup
B(p̃,c′nrα)

log ||θ||2 ≤ C(n, p)(rα + 1).

Projecting everythings back to M implies our desired result.

4 Heat flow technique on Kaehler manifolds

Theorem 4.1. (Ni-Tam) Let Mn be a complete noncompact Kahler manifold with nonneg-

ative holomorphic bisectional curvature and let u be a continuous plurisubharmonic function

on M satisfying

|u|(x) ≤ Cear(x)2

for some constants a,C > 0 where r(x) is the distance of x from a fixed point. Let v be the

solution of the heat equation with initial data u. There exists T0 > 0 depending only on a

and there exists T1 ∈ (0, T0) such that the following are true.

1. For 0 < t < T0, v(·, t) is a smooth plurisubharmonic function.

2. Let

K(x, t) = {w ∈ T 1,0
x (M) : vαβ̄(x, t)wα = 0, ∀ β.}

be the null space of vαβ̄(x, t). Then for any 0 < t < T1, K(x, t) is distribution on M .

Moreover the distribution is invariant under parallel translations.

3. If the holomorphic bisectional curvature is positive at some point, then v(x, t) is strictly

plurisubharmonic for all 0 < t < T1.

Before we proceed to the proof, we first state some of its applications.

Corollary 4.2. Let Mn be a complete Kahler manifold with nonnegative holomorphic bi-

sectional curvature. Suppose M is of maximal volume growth, then M is stein.

Proof. Assume first that M is simply connected. Let b(x) be the Busemann function on M .

By a result of Shen, if Mn has nonnegative Ricci curvature and maximal volume growth.

Then the Busemann function is a exhaustion function. Consider the heat flow v(t) with

v(0) = b(x). Let u = v(t0) where t0 < T1, then we obtain a smooth plurisubharmonic

function on M . By heat kernel estimate, u is also a exhaustion function.

By the main theorem, K(x, t) is parallel invariant, By de Rham decomposition, M = N1×M1

isometrically and holomorphically so that uαβ̄ ≡ 0 when restricted on N1 and uαβ̄ > 0 on

M1.

Due to the non-collapsing condition, N1 must be noncompact. On N1, define h = log(1 +

13



|∇u|2), h is plurisubharmonic. To see this, it suffices to show that hγγ̄ ≥ 0 in normal

coordinate. Let F = |∇u|2,

hγγ̄ =
1

(1 + F )2
[(1 + F )Fγγ̄ − FγFγ̄ ]

=
1

(1 + F )2

[
(1 + F )

(∑
α

uγαuγ̄ᾱ +
∑
α,s

Rγγ̄αs̄usuᾱ

)
−
∑
α

(uαγuᾱ)
∑
α

(uαuᾱγ̄)

]

≥ 1

(1 + F )2

(∑
α

uαγuᾱγ̄ +
∑
α,s

Rγγ̄αs̄usuᾱ

)
≥ 0.

The Busemann function b is distance like, and |∇b| = 1 almost everywhere on M . Thus,

u = O(r(x)) by Heat Kernel estimate. By gradient estimate, |∇u| = O(1). And hence

h = o(log(r(x)). By three circle theorem [7], h is constant function on N1 and hence |∇u|
is constant on N1. By Bochner’s formula, on N1,

0 =
1

2
∆|∇u|2 = |∇2u|2 + 〈∇u,∇∆u〉+Ric(∇u,∇u)

≥ |∇2u|2.

∇u is parallel. Hence J∇u is parallel. So N1 = N ′1×C as N1 is simply connected. Repeating

the process, we conclude that N1 = N × Ck for some k and N is compact. But Due to

the non-collapsing assumption, N does not exist. So M = Ck ×M1 where u is a strictly

plurisubharmonic exhaustion function on M1. Thus, M1 is stein and so is M .

If M is not simply connected, let M̃ be its universal cover, M̃ is of maximal volume growth

and nonnegative Ricci curvature. By a result in [6], π1(M) is finite. Let f be a smooth

strictly plurisubharmonic exhaustion function on M̃ . Then

h(x) =
∑

π−1(x)

f(p)

is a strictly plurisubharmonic exhaustion function on M . Thus M is stein.
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