Function theory on Kaehler manifolds

Note by Man-Chun LEE

1 Kaehler manifolds

Let M™ be a smooth manifold. A riemannian metric g is a smooth section of T*M ® T™* M

such that g is symmetric and positive definite at any p € M. In local coordinate (1, ..., ),
g = Gij da® @ da? .

In addition, if M is a complex manifold with almost complex structure J € TM @ T* M and

9(X,)Y)=¢g(JX,JY),VX,Y € TM. Then M is called Hermitian manifold, (M, g, J).

One can define a 2-form w, where wy(X,Y) = —g(X,JY). Let V be the Levi-connection of

a Hermitian manifold (M, g, J).

Definition 1.1. A Kahler manifold (M, g,J) is a Hermitian manifold such that VJ = 0.

In particular, (M, J) is a complex manifold.

Proposition 1.1. VJ = 0 if and only if dw = 0. Thus, a Kahler manifold is also a

symplectic manifold.
Proof. For X,Y,Z € I'(TM). By invariant formula, we have
dw(X,Y,Z) = —Xg(Y,JZ) + Yg(X,JZ) — Zg(X,JY)
9([X, Y], JZ) = g(IX, 2], JY) + ¢([Y; Z], J X)

We choose X = e1,Y = e3,Z = e3 to be normal coordinate vector field at p in order to

simplify our calculation. By J? = —Id, we have at p,
dw(X,Y, Z) = —g(Y,(VxJ)Z) = g(X,(VzJ)Y) + g(X, (Vy J)Z)
=9(Z,(VxJ)Y) +g(Y,(V2J)X) + g(X, (VyJ)Z).

The above equation is independent of choice of coordinate, so it is valid for arbitrary X,Y, Z.
At the same time, since JVJ +VJ-J =0,

9(Vx )Y, Z) = g(Vx(JY),Z) = g(JVxY, Z)
=Xg(JY,Z2) —g(JY,VxZ) — g(JVxY, Z)
=—XwZ,Y)+w(VxZY)+w(Z,VxY)
Because the connection is torsion free, using invariant formula

20(Vx )Y, Z) = dw(X,Y, Z) — dw(X, JY, ] Z).



1.1 Curvature on Kahler manifold

Given a Kahler manifold (M, g,J), extend g C-linearly to TM ®r C = T*OM @ T%' M.

Proposition 1.2. If u,v are both in T*°M or T M, then g(u,v) = 0.

Thus, locally we have

v _—
Wy = 72 2923 dz* A de.
i,
Denote h(u,v) = g(u, ) for u,v € TH9M, then h becomes a hermitian inner product.

Extend V in a C way to I'(TcM).
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Because of the fact that VJ = 0, this will imply
k _pk _pk _
Iy =T5=15=0.

So the only non-vanishing term will be 1’% and I‘fj.
By definition,
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So we have the following formula.
Féj = glk&igﬂ}-

Proposition 1.3. M is a Kahler manifold if and only if for all x € M, we can find a
holomorphic chart (z1, ..., 2,) such that g;;(x) = 6;; and dg;;(x) = 0.

Recall Riemannian curvature tensor:
R(u,v)w = V,Vyw = V,Vyw — Vi, qw ,u,v € TrM.

Extend Rm complex linearly to Tc M and denote R(u,v,w,z) = g(R(u,v)w, ).
Since J is parallel, R(u,v)(Jw) = J(R(u,v)w). Thus,

R(u,v, Jw, Jx) = R(u,v,w, x).

By symmetric of curvature operator, R(u,v,w,z) = 0 if w,z are of same type. The only

non-vanishing term are R,z;7.

By first Bianchi identity, we have a extra symmetric property for Rm on Kahler manifolds.



Proposition 1.4. In local coordinate,
Risp = —04019:5 + 901945 - Orgir-
We define Ricci curvature on M by
Ry = 9" Ryji = —00; log det(g5).
Some notation for complex manifold:

For f € C®(M), d = 0 + 0 where

of = Z%dzi, f = Z%dzi.

In general,
O APT 5 APTLA 5. APy APatL

And 9, satisfies 92 = 9> =0, 90 + 90 = 0.

The Ricci form is then given by

/I

—1 . =
Ric = TRﬁdz’ Adz7.

So locally
1 _
Ric = — T(“)B log det g

which is clearly a closed, real (1,1) form.
Remark: One can check that the definition is same as the Ricci curvature in Riemannian
case. In particular, if we choose a orthonormal base {ej,...,e,} such that Je; = e, 1;. And
u; = (ei — vV/—1lenys)/V/2. Then {u;} is a unitary frame on 7H°M. Direct computation
yield

Ric(u;,w;) = Ric(e;, e;).

Definition 1.2. We say M has a non-negative bisectional curvature, BK > 0 if
R(u,,v,0) >0 for allu,v € T*°M.

We say M has a non-negative holomorphic curvature, H > 0, if
R(u, @, u,a) >0 for allu € T“°M.

Noted that BK > 0 imply Ric > 0. But the relationship between H and Ric remains

unknown.

1.2 Result about structure of manifolds with curvature constraint

Theorem 1.3. (Uniformization theorem) Every simply connected Riemann surface is con-
formally equivalent to one of the three domains: the open unit disk, the complex plane, or

the Riemann sphere.



Uniformization conjecture by Yau: If M is complete non-compact Kahler man-
ifold with BK > 0, then M is biholomorphic to C”.

Theorem 1.4. (Soul theorem) If (M, g) is a complete connected Riemannian manifold
with sectional curvature K > 0, then there exists a compact totally convezx, totally geodesic
submanifold S such that M is diffeomorphic to the normal bundle of S.

In particular, if K > 0, then S is a singleton. That is to say M being diffeomorphic to R™.

Theorem 1.5. (Frankel Conjecture solved by Siu-Yau, Mori) If M is compact Kahler man-
ifold with BK > 0, then M 1s biholomorphic to CP".

Definition 1.6. Given a Riemannian manifold M™, let p € M. We say M has mazimal

volume growth if W >c¢>0 forallr > 0.

Theorem 1.7. (Mok-Siu-Yau,1981) Let M be a non-compact Kahler manifold. If there
exists C,e > 0 such that 0 < BK (x) < # and M has mazimal volume growth, then M

is biholomorphic and isometric to C™.

2 Mok-Siu-Yau’s result

Theorem 2.1. (Mok-Siu-Yau,1981) Let M be a non-compact Kahler manifold. If there
exists Cye > 0 such that 0 < BK(x) < # and M has mazimal volume growth, then M

is biholomorphic and isometric to C™.

Proposition 2.1. M™ is Kahler manifold with BK > 0. Let p be a real d-closed (1,1)
form, f = pggij. If f = $Aru for some function u, then ||[v/=100u — p||? is sub-harmonic.
Proof. Choose a normal coordinate at p. Then R;j;.; = —0x0jg;; at p. Let v = v/—100u—p.

1 T
SAlIl? = 0,0,(9"g T v570)

J— — 2 2
= Ryipp0ij 05 + RjippvijUin + |0pvi5]” + |01

+ ﬁpaﬁvij . W + U,L'j . 8;0813%

By 90 lemma, p = v/—190w for some w locally as p is d-closed (1,1) form. By assumption,

trac(v) = 0. Taking derivative on trac(v) to yield
> Rigijouti + ) 005055 - 05 = 0, Vi, j.
k,l k

By mean of transformation of U(n), we may further assume v;; = a;d;; at p, where a; are

real. Then,

1 9 . . . .
§A||U I 2 RygppuijUi + RppvijUic + 0p0pvij - Vi + vij - Op0p035

2
2 2R50; — 2Rgp5a:a, > 0.



Proposition 2.2. (M™ p),n > 3 is a manifold with Ric > 0 and mazimal volume growth.
Let f > 0 be a smooth function on M. Then Au = f has a solution if

1. f(z) < ﬁ, and ey such that —cylog(r(x) + 2) < u(z) < ¢plog(r(x) + 2).

2. f(z) < Wi)zﬂ, and 3Cy > 0 such that |u(x)| < Cs.

Proof. Here we will only demonstrate case 1.

(Some review for Green function [5]) For M" with Ric > 0, it is non-parabolic if

/100 Vf(t) =

Due to the non-collapsing assumption, Greeen function G(z,y) exists with the

and only if

following properties.

1. G(z,y) > 0,

2. 3 ¢> 0 s.t. < G(z,y) < ;.

-1
C
a2(z,y) an—2(z,y)?

3. G(z,y) = G(y, x),
4. [, G(z,y)Af(y) dy = —f(x) for f € C3°(M),
5. |VaGl2,y)| < 5=y

For R > 0, let fr(x) = ¢(z)f(x) where ¢ is a non-increasing smooth function in which
p=1on B(p,R+1), p=0o0n B(p,R) and ¢', ¢” are bounded. Let

un(z) = A [6(p.9) = Gl ) dy.

Then ug satisty Aug = fr and ug(p) = 0. For v € M, R >> r = r(x). By gradient
estimate for G,

G(p,y) — Gla,y)| Faly) dy < / AT

/B(p,R>\B<p,2r) B(p,R)\B(p,2r) (d(y;p) — 1)

- / Cr dy
= B Rt \Bp2ry (L+7r@)?)(r(y) —r)n=t

By volume comparsion, we further deduce that

R n—lr
|G(p,y) — G(z,y)|fr(y) dy < / ct

/B(p,R+1)\B(p,2r) or (L+3)(t—r)n—t

On the other hand,

Cc

/B@,m Gl 9)fly) dy < /B@,gm )

2r c
= ——dA
/O 36 2(1 tz)d tdt

< Clog(r + 2).




[ aewwas Lo [
G(z,y)f(y) dy < = / sds < C.
B(z,r/2) r2+4 J,

Also, for r > 0

c

Gz, 9)f(y) dy < / dy

B(p.2r)\B(z,r/2) Az, y)"2(d(p,y)* + 1)

2r
s+r
< 01/ 211 ds
—r/2

~/B(p,2r)\B(;v,r/2)

16r% 4 1
C1 g 107 H1 + Cyr - [arctan(2r) + arctan(r/2)]

2 o8 r2 44
<C,

Combine all this, we have
lur(z)| < Cpllog(r(z) + 2)].

We now claim that img_, ug(x) exists after passing to subsequence.
First as M has non-negative Ricci curvature and is non-collapsing, Sobolev inequality with
compact support is valid. Furthermore, the sobolev constant is an absolute constant. Thus
we have Harnack inequality for positive harmonic functions on geodesic ball and hence the
Holder estimate

fu(z) — u(wo)| < Crlz — x|

for x,zp € B(p, R).
Let R1 < Ry < ... < R, < ... correspond the exhaustion, for each j € N, define v; =
uR, — ug, which is harmonic on B(p, R;). Thus for z,y € B(p, R;/2),

g, (€) = ur, (y)] < [vi(x) = vi(Y)| + [ur, (2) = ur, (Y)] < Cjlz = ol + [ur, (x) — ur,(Y)]-

So, {ur,}{2; is equicontinuous on B(p, R;/2). By ArzelAscoli theorem, we can extract
convergent subsequence limp_,o ur(z) on B(p, R;/2). Using diagonal argument, we have
limit function u(z) = limp_ oo ur(z). By gradient estimate of G, we infer that |Vu| =

o(1/r). O
Lemma 2.2. Second derivative estimate for both situations:

1

C
_— VZul? < = forR > 1.
BT Sy < T

Proof. Recall bochner’s formula,
1
5A\Vu|2 = |V2u|? + (Vu, VAu) + Ric(Vu, Vu) > |VZu|? + (Vu, Vf).

Let ¢ be a cut-off function such that ¢ = 1 on B(p,R), ¢ = 0 outside B(p,2r), and



Vol < ¢/R.

1
/ PIVPul? < L / GPAIVu? — ¢ (Vu, V)
B(p.2R) 2 JB@p2R)

<- [ VeV - #(Tu V)
B(p,2R)
1
<cl[ @V + (4 )TVl
B(p,2R) €
Choose € small enough to conclude the result. O

Theorem 2.3. Let M™ be a complete Kahler manifold with BK > 0 and mazimal volume

growth. In addition, if the scalar curvature S < —%=, then M is flat.

Proof. By previous porposition, we can solve for w in which Au = s. In particular, |u| < C,
|Vu| = o(1/r). As ||Ric — v/—180ul|| is subharmonic, by Li’s mean value inequality, for
R >> r(x),

¢
Vol(B(p, R))

N S
~ Vol(B(p, R))

||Ric — /—100u||*(x)

IA

/ ||Ric—\/—185u||2
B(p,R)

1
IV2u|? + |Ric? = O(—=) — 0.
/Bmm R

Thus, Ric = v/—100u. To finish our proof, it suffices to show that u is constant.
For n > 2,

/ (00u)™ = / u A (90uw)" = o(1/r) - ( 21+ )L 0@l = 0.
B(p,r) OB(p,r) e

Thus, (90u)" = 0. Assuming M is stein, let ® : M — CV be the embedding, ®(p) =
(z1(p), 22(p), ..., 2N (p)). Let ¢ be the restriction of Zf\il |2;]? on M. If u is non-constant,
for each ¢ < 0, M, = {u < ¢} is precompact. We may further assume M, is smooth.
Let z¢ be a point on M, such that ¢ attains maximum. So locally M. is on one side
of {¢p = ¢(x0)}. Therefore i9du is bounded below by the complex hessian of the distance
function on the complex tangent space of dM,. at xy. In particular, i90u is strictly positive

on it.
90e™ = e“9du + e“Ou A du

is then positive at xy. However, on M

/ (08e"y" = / Bet A (9Bem)—1
B(p,r) 9B(p,r)

= / e u A (00u + du A du)" " — 0.
9B(p;r)

So, (09e*)™ = 0. Contradiction arised.
Remark: It has been proved later by Ni-Tam that M must be stein if it satisfies

the assumption in this theorem. O



Corollary 2.4. Suppose M is a Kahler manifold with mazimal volume growth and BK > 0.

Furthermore, if the scalar curvature s < T%, then fM Ric™ < 0.

Proof. Solve for i00u = Ric.

/ Ric" = / iOu A Ric™ ' < ' <
B(p,R) 9B(p,R)

Where C’ is independent of R. O

Theorem 2.5. (Ni-Shi-Tam) The conclusion of Proposition 2.2 still hold if we only assume
Ric> 0 and

0<f@) < e and s [ f) <
B(p,r)

T 14 r(x)? Vp(r) 1472

Corollary 2.6. If M™ has BK > 0, and Ric > 0 at p € M. Furthermore, if the scalar

curvature satisfies s < T% and ﬁ fB(p,r) s < T% Then M has mazximal volume growth

and 3¢ = (M) > 0 such that for r large

_1 / s> &
VP(T) B(p,r) a 7”2.

Proof. Solve for u where i00u = Ric by Theorem above. |Vu| < ¢/r. Then

O<e< / Ric™ = / i00u A Ric™ !
B(p,R) B(p,R)
1 1

= iOuARic" ' <C = ——— - vol(0B(p, R
Lo & g v0l(OB(p, B))

which implies maximal volume growth.

Assume r >> 1,

O<e< / Ric" = / iOu A Ric™ !
B(p,r) 9B(p,r)
C
S on_3 / Ric A W”_l
r dB(p,r)

RECRYA,
r2n—3 OB (pr) :

O

Theorem 2.7. (Chen-Zhu) Let M™ be a Kahler manifold BK > 0. Let p € M. Then
e = ¢(M,p) > 0 such that
vol(B(p,r)) > Cr'™.

Proof. Consider Busemann function b on M, where

b(x) = lim (r — d(z,0B(p,))).

T—00



It is known that |[Vb| =1 a.e. and b is strictly plurisubharmonic in the support sense. By

smoothing argument, for R > 2, 3¢ > 0 such that

0 < cR?" < / (i03b)" (R — r)2" = 2n / (R — r)2"=18b A (108b)"~" A Or
B(p,R) B(p,R)

<C, (R —7)>""1(i00b)" ' Aw
B(p,R)

<c / (R~ r)"w" < CL RV, (R),
B(p,R)

which implies Vol(B(p,r)) > ¢'r™, for all r > 2. O

3 Application of Hirmander L? estimate.

Theorem 3.1. (Hormander L* estimate): Let (M,w) be a complete Kaehler manifold. L —
M be holomorphic line bundle with Hermitian metric h (locally given by e=2¢ |s|? = e2%.
Let © be the curvature (1,1)-form, © = 2i00¢. Let g be a smooth section in A™' @ L (i.e.
L valued (n,1) form.), with 0g = 0. Assume © > ew where € is positive function on M. If

/ lg|2e™! < oo, then there exists f € T(A™9 @ L) such that
M

2 ‘g|%b
0f =g and [ Iffp< [ b
M M €

3.1 Some Applications of L*-estimate

Theorem 3.2. (Mok) Let M™ be a complete Kahler manifold with BK > 0 and mazimal
volume growth. Furthermore suppose the scalar curvature s satisfies s < -5, r(x) = d(z, xo)
for some fized point xo € M , then there exists a non constant holomorphic function with

polynomial growth on M.

Proof. Due to the growth condition of scalar curvature s, one can solve u in which i00u =

Ric. Furthermore, u satisfies
lu(z)| < Clog(r(z) + 2).

Let p € M, there exists a holomorphic chart (z1, ..., z,) on B(p,d) with z;(p) = 0. Let ¢ be
cut-off function with ¢ = 1 on B(p,d/5) and ¢ = 0 outside B(p,d/3). Now we look for a

good weight function.
Lemma 3.3. i00(\u + 2nplog(|z]?)) > cw > 0 on B(p,d/3) for some A >> 1, ¢ > 0.
Proof. Noted that i90log|z|?> > 0 in the current sense. Thus,

i00[plog |z|*] = ipddlog |z|* + i0Dp - log |z|* 4+ i0p A Dlog |z|* +idlog|z|* A D

> —c

)



where ¢ depends on the C? bounds of ¢ and 6. So for sufficiently A, we have on B(p,§/3)
100 (Au + 2neplog |z|2) > cw.
O

Take L = T™°(M), choose metric h = e™% = e~ Qut2nelog|=") - Thyg, the curvature
form © = —iddlogh > cw > 0. Let ¢ be a smooth cut-off function such that ¢ = 1 on
B(p,d/5) and ¢ = 0 outside B(p,/4). Apply L? estimate to solve dg = d(¢z1) with

/|Waw§3/|amm%W<am
M CJm

Noted that on B(p,§/5), e™% = e~ |z|74". Thus, it is not locally integrable which implies
g(p) =0 and dg(p) = 0.

Now f = g — ¢z is holomorphic on M with f(p) = 0, df(p) = d(¢z1) # 0. f is thus
non-constant and f = g outside B(p,d). It suffices to show that g is of polynomial growth.
Let y € OB(p, R) in which R > 100,

Cx [ gpevz [ ez [ prayezore 9P
M B(y,R/2) B(y,R/2) B(y,R/2)

By Li’s mean value inequality together with maximal volume growth condition, we conclude
that 3C > 0 independent of y such that

Cn

mwﬁs———/ gf? < CRe2",
Vy(R/2) JB(y,r/2) |

O

Theorem 3.4. (Chen-Zhu) Let M™ be a Kahler manifold with BK > 0, then the scalar

curvature s satisfies % fB(p,r) s < £, where ¢ = c¢(M,p).

Proof. Let p € M. Let (21, ...2,) be a chart on B(p, ). Consider the Busemann function b,
it satisfies i100b > ew for some € > 0 on B(p, ). Define 1) = \b + 2nplog |z|?, where ¢ is a
cut-off function same as the proof above. ) is large enough such that i99 > cw on B(p, ).

Consider a smooth section on the canonical line bundle u = pdz; Adzs A ... Adz,, where
 is a smooth function with compact support on B(p,/4) and equals to 1 on B(p,d/5). By

L? estimate, we obtain a nontrival holomorphic section 6 on Ky such that ||6(p)|| = 1 and

/ 16][2 < oo,
M

Since the Busemann function is distance like function and Al|#||* > 0, by Li’s mean value

inequality [4], we have

0(z)| < Cpe @,

10



For 6 > 0, log(|#|? + ) is smooth, and by directly computation,

o]
Alog(]|0])% + 6) > _slieff” )

Consider M x C? instead of M, positive green function exists and the volume growth is at
least of order 4. For o, 8 >,¢ > 0,0 < § < 1, for (z,t) € M x C?

3/16/2 ) . .
[ G - [ Aloglel? )G - '
B>G(z)>a || H + B>G(z)>a

:/ log(|[0]|* +8) - A(G — )+
B>G(z)>

9 2 1+e
+ [ galloslil +0))C — '

_/ (1+ €) log(|[6] 2 +6)(G—a)€g—i.
G

Noted that on {8 > G > a},

A(G — )+ = e(1+ €)(G — a) VG| > 0.

So we get
/ log (6% + 6) - A(G — )+ < sup log(||6][* +6) - / A(G — o)t
B>G(z)>« B>G>a B>G>a
oG
< sup log(|lfl[> +6) / (146G —a) 2.
B>G>a G=8 on

Letting € — 0 it follows

36| ) / e,
SN Gz, p) —a) < sup log(]|0]] + 6) - &
/B>G>a”9||2+5< () =) < s gl +0)- [

0 9 .

+ [ gnlestIOI +0)(G ~a)
_ oz(llol + 6 2C
[ st + o 5

’
Since G' and g—g are asymptotic to 25 and Tzf%l as 8 — oo, thus
T2n—1
| (G—a)| <cn—mg— =c(n)r =0, as B — 0.
G=p5 r n—2

and

oG
— —c¢(n)as B — .
L e

Since ||0(p)|| = 1, letting 8 — oo yield
31011 L 1 2 ] 2/~
oz 5 (G2, ) — @) < ¢ | sup log([|0]]" + &) — log(]|0]%(p) + 9)
G>a ||9|| +46 G>a

< ¢, sup log(||9\|2 +9).
G>a

11



Letting § — 0 implies
/ 5(2)G(2,p) < ¢, sup log||0]||*.
G>2a G>a

For a > 0, let r, be the maximum positive number such that B(p,r,) C {G > a}. For M

equiped with Ric > 0, the minimal postive Green’s function satisfies

o tdt  tdt
C / J? p) < Cl/ .
r(z) Vﬁ(t)

By volume comparsion,

G(z,p) > Cy*

On the other hand,

_ ¢ dt © tdt  Cr(2)?
cepsa | pusoe [ gmE=veoy

As a result, there exists C' = C(n) such that for all a > 0, r,, satisfies

2 C’r’2
071 "o S «a S a
Vi(ra) Vi(ra)
Thus, if G(z,p) > «
C1r(2)? r2
>G(z,p) >a>C—=
Vi(r(z)) Vi(ra)
by the above inequality,
g 2
Vilr(2) _ ()
Vi(ra) — 2

Since B(p,r) x B(0,7) C B(p,r) C B(p,r) x B(0,r) for each r > 0,

(
L (r(2)/2) ra \' Valr(2)/2) (r(2)/2* _ (e \'Va(r(2)/2) _ card
wm>—%(m0 : : S"Q@) Va(ra)  — r2(z)

In both of the cases 7(2)/2 < 1, or 1(2)/2 > 1o, 7(2) < cpra. Thus {G > a} C B(p, cpra).

Combine everythings, one can get

2
Cra / §(2) < / a-3(z) < / a-3z) < G- i(x)
Vs(ra) JB(pra) B(f.re) G>a G>a

<c¢, sup log||0|]*<ec, sup log|ld|>.
G>a/2 B(p,cnray/2)

On the other hand, r, and r, /3 can be related in the following relation.

5 2n
125 < Cpa Vi(rays) < Cp— 25 02 < Cpr? (W?> .

Ta



So for any o > 0,

2

e[ sav<Clup) swp og|0fP < Clup)ra + 1)
Vi(ra) B(p,ra) B(p,cl,Ta)

Projecting everythings back to M implies our desired result.

4 Heat flow technique on Kaehler manifolds

Theorem 4.1. (Ni-Tam) Let M™ be a complete noncompact Kahler manifold with nonneg-
ative holomorphic bisectional curvature and let u be a continuous plurisubharmonic function
on M satisfying

Jul(2) < Cen

for some constants a,C > 0 where r(x) is the distance of x from a fized point. Let v be the
solution of the heat equation with initial data u. There exists Ty > 0 depending only on a

and there exists T € (0,Ty) such that the following are true.
1. For 0 <t < Ty, v(-,t) is a smooth plurisubharmonic function.

2. Let
K(z,t) = {we T (M) : Vo, t)w* =0, V .}

be the null space of v,5(w,t). Then for any 0 <t < Ty, K(x,t) is distribution on M.

Moreover the distribution is invariant under parallel translations.

3. If the holomorphic bisectional curvature is positive at some point, then v(x,t) is strictly

plurisubharmonic for all 0 <t < Tj.

Before we proceed to the proof, we first state some of its applications.

Corollary 4.2. Let M™ be a complete Kahler manifold with nonnegative holomorphic bi-

sectional curvature. Suppose M is of mazimal volume growth, then M is stein.

Proof. Assume first that M is simply connected. Let b(z) be the Busemann function on M.
By a result of Shen, if M™ has nonnegative Ricci curvature and maximal volume growth.
Then the Busemann function is a exhaustion function. Consider the heat flow v(¢) with
v(0) = b(x). Let u = v(ty) where to < T3, then we obtain a smooth plurisubharmonic

function on M. By heat kernel estimate, u is also a exhaustion function.

By the main theorem, K (z, t) is parallel invariant, By de Rham decomposition, M = Ny x M,
isometrically and holomorphically so that u,z = 0 when restricted on Ny and u,z > 0 on
M;.

Due to the non-collapsing condition, N7 must be noncompact. On Np, define h = log(1 +
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|Vul?), h is plurisubharmonic. To see this, it suffices to show that h,s > 0 in normal
coordinate. Let F' = |Vul|?,

1

M = g e (e =
1
= m (1 + F) (Z UnaUzg + Z R’Y’Yas”sﬂa) - Z(uawu&) Z(uauéﬂ)
1
= 1+ F) (Z UayUay + Z Rwasusua> > 0.

The Busemann function b is distance like, and |Vb| = 1 almost everywhere on M. Thus,
u = O(r(x)) by Heat Kernel estimate. By gradient estimate, |Vu| = O(1). And hence
h = o(log(r(x)). By three circle theorem [7], h is constant function on N; and hence |Vu|

is constant on N;. By Bochner’s formula, on Ny,
1
0= 5A|vu|2 = |V2ul]® + (Vu, VAu) + Ric(Vu, Vu)
> |V2ul?.

Vu is parallel. Hence JVu is parallel. So N; = N{ xC as Ny is simply connected. Repeating
the process, we conclude that N; = N x C* for some k and N is compact. But Due to
the non-collapsing assumption, N does not exist. So M = CF x M; where u is a strictly
plurisubharmonic exhaustion function on M;. Thus, Mj is stein and so is M.

If M is not simply connected, let M be its universal cover, M is of maximal volume growth
and nonnegative Ricci curvature. By a result in [6], 71 (M) is finite. Let f be a smooth

strictly plurisubharmonic exhaustion function on M. Then

Wa) = S f)

= 1(x)

is a strictly plurisubharmonic exhaustion function on M. Thus M is stein. O
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